\(\int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [140]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 169 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^3 (5 A+9 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (5 A+3 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {4 a^3 (5 A-6 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (5 A-B) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{5 d} \]

[Out]

4/5*a^3*(5*A+9*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*
a^3*(5*A+3*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*A*(a
+a*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)-4/15*a^3*(5*A-6*B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d-2/5*(5*A-B)*(a
^3+a^3*cos(d*x+c))*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3054, 3055, 3047, 3102, 2827, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^3 (5 A+3 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^3 (5 A+9 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}-\frac {4 a^3 (5 A-6 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{15 d}-\frac {2 (5 A-B) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}{5 d}+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[((a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(4*a^3*(5*A + 9*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^3*(5*A + 3*B)*EllipticF[(c + d*x)/2, 2])/(3*d) - (4
*a^3*(5*A - 6*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(15*d) + (2*a*A*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(d*Sqrt
[Cos[c + d*x]]) - (2*(5*A - B)*Sqrt[Cos[c + d*x]]*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {(a+a \cos (c+d x))^2 \left (\frac {1}{2} a (5 A+B)-\frac {1}{2} a (5 A-B) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (5 A-B) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {4}{5} \int \frac {(a+a \cos (c+d x)) \left (\frac {1}{2} a^2 (10 A+3 B)-\frac {1}{2} a^2 (5 A-6 B) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (5 A-B) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {4}{5} \int \frac {\frac {1}{2} a^3 (10 A+3 B)+\left (-\frac {1}{2} a^3 (5 A-6 B)+\frac {1}{2} a^3 (10 A+3 B)\right ) \cos (c+d x)-\frac {1}{2} a^3 (5 A-6 B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {4 a^3 (5 A-6 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (5 A-B) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {8}{15} \int \frac {\frac {5}{4} a^3 (5 A+3 B)+\frac {3}{4} a^3 (5 A+9 B) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {4 a^3 (5 A-6 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (5 A-B) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{3} \left (2 a^3 (5 A+3 B)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (2 a^3 (5 A+9 B)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {4 a^3 (5 A+9 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (5 A+3 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {4 a^3 (5 A-6 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (5 A-B) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.74 (sec) , antiderivative size = 888, normalized size of antiderivative = 5.25 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {(5 A+18 B+15 A \cos (2 c)+18 B \cos (2 c)) \csc (c) \sec (c)}{40 d}+\frac {(A+3 B) \cos (d x) \sin (c)}{12 d}+\frac {B \cos (2 d x) \sin (2 c)}{40 d}+\frac {(A+3 B) \cos (c) \sin (d x)}{12 d}+\frac {A \sec (c) \sec (c+d x) \sin (d x)}{4 d}+\frac {B \cos (2 c) \sin (2 d x)}{40 d}\right )-\frac {5 A (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{6 d \sqrt {1+\cot ^2(c)}}-\frac {B (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{2 d \sqrt {1+\cot ^2(c)}}-\frac {A (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{4 d}-\frac {9 B (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{20 d} \]

[In]

Integrate[((a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(-1/40*((5*A + 18*B + 15*A*Cos[2*c] + 18*B*Cos[
2*c])*Csc[c]*Sec[c])/d + ((A + 3*B)*Cos[d*x]*Sin[c])/(12*d) + (B*Cos[2*d*x]*Sin[2*c])/(40*d) + ((A + 3*B)*Cos[
c]*Sin[d*x])/(12*d) + (A*Sec[c]*Sec[c + d*x]*Sin[d*x])/(4*d) + (B*Cos[2*c]*Sin[2*d*x])/(40*d)) - (5*A*(a + a*C
os[c + d*x])^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*S
ec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(6*d*Sqrt[1 + Cot[c]^2]) - (B*(a + a*Cos[c + d*x])^3*Csc[c]*H
ypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]
]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Si
n[d*x - ArcTan[Cot[c]]]])/(2*d*Sqrt[1 + Cot[c]^2]) - (A*(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((H
ypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 -
 Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 +
 Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + T
an[c]^2]]))/(4*d) - (9*B*(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2, -1/4},
{3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqr
t[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2])
 - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan
[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(20*d)

Maple [A] (verified)

Time = 9.08 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.99

method result size
default \(-\frac {4 a^{3} \left (-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+42 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+25 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-18 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-27 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(337\)
parts \(\text {Expression too large to display}\) \(756\)

[In]

int((a+cos(d*x+c)*a)^3*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-4/15*a^3*(-12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+10*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+42*B*cos
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-20*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+25*A*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-18*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/
2*c)^2+15*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)-27*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/si
n(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.36 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (5 \, A + 3 \, B\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (5 \, A + 3 \, B\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 9 \, B\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 9 \, B\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, B a^{3} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 3 \, B\right )} a^{3} \cos \left (d x + c\right ) + 15 \, A a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )} \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(5*A + 3*B)*a^3*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*
I*sqrt(2)*(5*A + 3*B)*a^3*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)
*(5*A + 9*B)*a^3*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))
) + 3*I*sqrt(2)*(5*A + 9*B)*a^3*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) -
I*sin(d*x + c))) - (3*B*a^3*cos(d*x + c)^2 + 5*(A + 3*B)*a^3*cos(d*x + c) + 15*A*a^3)*sqrt(cos(d*x + c))*sin(d
*x + c))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**3*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 1.09 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.36 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {A\,a^3\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {6\,A\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,B\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^3)/cos(c + d*x)^(3/2),x)

[Out]

(A*a^3*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (6*A*a^3*ellipticE(c/2
 + (d*x)/2, 2))/d + (6*A*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*B*a^3*ellipticE(c/2 + (d*x)/2, 2))/d + (4*B*a
^3*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a^3*cos(c + d*x)^(1/2)*sin(c + d*x))/d + (2*A*a^3*sin(c + d*x)*hyperg
eom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) - (2*B*a^3*cos(c + d*x)^(
7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))